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In a matroid with bases B and B*, a B-exchange is a pair of elements 
e, e', where B - e ♦ e*  is a base.    A serial exchange of B into B*  is a 
sequence of pairs e., e.', for i ■ 1, ..., n, such that e., e.', is a B.  ,- 

exchange, where B0 = B, B. * B.  ,-e. ♦ e.'  , and B   - B'.    This paper shows 

there is a one-to-one correspondence between elements of B and B' such that 
corresponding elements e, e* give B-exchanges; furthermore, the pairs e, e' 
can be sequenced to give a serial exchange of B into B*.    A symmetric exchange 
is a pair of elements e, e' such that e, e'  is a B-exchange and e', e is a BT- 
exchange.    Any element of B can be symnetricall/ exchanged with at least one element 
of B'.    But in contrast to B-exchanges, it is not always possible to make a 
correspondence between B and B* so corresponding elements give symmetric exchanges. 
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ABSTRACT 

In a matrold with bases B and B', a B-exchange is a pair of elements 

e, e', where B - e + e' is a base.  A serial exchange of B Into B' is a 

sequence of pairs e , c ', for i » 1, .... n, such that e , e ' i^ a B  - 

exchange, where BQ « B, B1 = BJ.J^-GJ^ + ei', and B = B'.  This paper shows 

there is a one-to-one correspondence between elements of B and B* such that 

corresponding elements e, e* give B-exchanges; furthermore, the pairs e, e* 

can be sequenced to give a serial exchange of B into B'. A symmetric exchange 

is a pair of elements e, e* such that e, e' is a B-exchange and e', e is a 

B*-exchange. Any element of B can be symmetrically exchanged with at least 

one element of B*. But in contrast to B-exchanges, it is not always possible 

to make a correspondence between B and B! so corresponding elements give 

syvnetric exchanges. 
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Many network and linear programming problems are solved by repeatedly 

exchanging elements of a base.  The pivot step in linear programming Is a 

general example.  The existence of such exchanges can be taken as a defining 

property of a matroid [2]. This note presents results concerning several 

types of matroid base exchanges. 

First we define three types of exchanges. Let M be a matroid, with 

bases B and B'. For example. Figure shows the graphic matroid on four 

nodes. One base consists of the solid arcs 1, 2, 3; another base consists 

of the dotted arcs 4, 5, 6. 

An ordered pair of elements e, e' is a B-exchange if B -{«J+fe* }i8 a 

base. Table 1 shows the possible B-exchanges for each element in B - (1, 2,3). 

A serial exchange of B into B* is a sequence of ordered pairs, e., e '; 

e.( e.', ..., e , e ', such that for all i in 1 < i < n, a base is formed by i      z n     n —  — 

the set 

Bi » B - {e , .... e } + {e* , .... e^} 

Furthermore, B » B'. The definition implies each pair e., e ' is a B, , 
n r        r    i  i      i-1 

exchange. Hence the sequence of exchanges can be executed serially.  Figure 

2 shows a serial exchange of the base {l, 2, 3} into {A, 5, 6}. 

A symmetric exchange is an ordered pair of elements e, e* such that the 

sets B -{eHte'tend B' -{e'Melare bases. Equivalently, the pair e, e' is a 

B-exchange and e', e is a g' exchange. Table 2 shows the possible symmetric 

exchanges for each element in B - {1, 2, 3} 

To  characterize these exchanges, we introduce notation for some well-known 

matroid concepts [2]. For a base B and an element f I B, B(f) denotes the unique 

circuit in the set B + f.  In Figure 1, for base B - {1, 2. 3} , B(5) » f2, 3, 5}. 
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For a set of elements D, sp(D) denotes the span of D. This set is defined as 

the smallest superset of D such that for any element f, If sp(D) + f contains 

a circuit containing f, then f e 8p(D).  In Figure 1, sp ({ 4, 6}) - {2, 4, 6). 

Lamma 1; For elements e c B, e* I B, these conditions are equivalent: 

(i) e, e' Is a B-exchange 

(ii) e C BCe'). 

(iii) e' i  sp(B-e). 

Proof;  An imedlate consequence of the definitions. 

Corollary 1: For elements e c B - B', e* e B* - B, these conditions are 

equivalent: 

(i) e, e* is a symmetric exchange. 

(11) e' c B'(e) - sp(B - e) 

It is apparent from the lemma that any element e e B gives a B-exchange 

with at least one e.ement of B*. We show the same is true for symmetric 

exchanges. 

Theorem 1; For any element eeB, there is an element e* c B such that e, e' is 

a symmetric exchange. 

Proof: Consider any element eeB.  If e e B', then clearly e, e* is a 

symmetric exchange. So assume e I B*. 

Since B is a base, element e i  sp(B-e). Thus the circuit B* (e) is not 

contained in sp(B - e) + e, that is, 

B* (e) - e ^ sp(B - e). 

Now corollary 1 shows there is a symmetric exchange for e, completing the 

proof. 

T ..r-"-   
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In Figure 1, we tan pair the elements of B » (l,  2, 3} and  {A,  5,   6)  so 

ench pair gives a B-exchange:    1,   6;   2,  5;   3, 4.    Figure 2 shows these pairs, 

in the given sequence, are a serial exchange of  (1,  2,  3}  into  {4,   5,   f>}.    Now 

we show such a pairing can be made  in general. 

Theorem 2:    There is a one-to-one correspondence between elements of B and B', 

such that corresponding elements e,   e'  gi^e a B-exchange.    Furthermore,   the 

pairs e,  e'  can be sequenced to give a serial exchange of B Into B*. 

Proof;     Denote  the bases by 

B =  {e.,  e  ,   ...,   e   },     B'   =   (e!,  e',...,  e'}. 
1      ^ n 12 n 

We assert indices can be chosen in B so for all i in 1 £ i^n, the pair e., e' 

is a B-exchange; furthermore, a base is formed by the set 

Bi ' ^i* V ••" V   ^r '^^   •■' en}' 

Note the assertion implies the theorem. For the pairs e. e' give a correspondence 

of B-exchanges, and the sequence e e'; e  .;...; e , e' is a serial exchange 

of B into B*.  The assertion is proved by induction on i. The Initial step, 

1*0, is obvious, since B' - B Is a base.  For the inductive step, suppose 

B' is a base. We prove the assertion for 1 + 1, as follows.  Element e! . 

of base B' gives a symmetric exchange with some element of base B. This 

element cannot be e , for j in 1 £ j £ i, since e c  B!. With proper choice 

of Indices, wc can assume e ., e'   is a symmetric exchange. Thus ^ ., e' 

is a B-exchange, and B'  is a base.  This completes the induction. 

The proof of Theorem 2 gives a constructive procedure for finding the one- 

to-one correspondence of B-exchanges.  The theorem itself, specialized to 

graphic matroids, is useful in finding minimum weight spanning trees with 

specified degree at one node [1]. 
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It is natural to try to generalize Theorem 2 to symmetric exchanges. 

However Table 2 shows it is not always possible to pair the elements of two 

bases so each pair is a symmetric exchange. 
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Figure 1.    Bases {1,  2,  3} and {4,  5,  6}  in a graphic matrold. 
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Table 1.    B-axchanges for e, B - { 1,  2,  3} 

1 el 

1 4,  6 

2 5,  6 

3 4,5.6 

Tible 2.    Symmetrie exchanges for e. 

1 

2 

6 

6 

4.   5,  6 

Figure 2. Serial exchange of {1, 2, 3} into {4, 5, 6}. 
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